
Page 1 of 7

Catamount Software Architecture with Dual Core
Extensions

Suzanne M. Kelly
Sandia National Laboratories*

Scalable Systems Integration Department
PO BOX 5800

Albuquerque, NM 87185-0817
smkelly@sandia.gov

Ron Brightwell, John Van Dyke
Sandia National Laboratories

Scalable Computing Systems Department
PO Box 5800

Albuquerque, NM 87185-1110
rbbrigh@sandia.gov, jpvandy@sandia.gov

ABSTRACT
Catamount is the light weight kernel operating
system running on the compute nodes of Cray
XT3 systems. It is designed to be a low overhead
operating system for a parallel computing
environment. Functionality is limited to the
minimum set needed to run a scientific
computation. The design choices and
implementations will be presented. This paper is
a reprise of the CUG 2005 paper, but includes a
discussion of how dual-core support was added
to the software in the fall/winter of 2005.

Keywords
Operating Systems, MPP, Light Weight Kernel,
Dual Core.

1.0 Background
A massively parallel processor (MPP), high
performance computing (HPC) system is
particularly sensitive to operating system
overhead. Traditional, multi-purpose, operating
systems are designed to support a wide range of
usage models and requirements. To support the
range of needs, a large number of system
processes are provided and are often inter-
dependent on each other. The overhead of these
processes leads to an unpredictable amount of
processor time available to a parallel
application[1, 2]. Except in the case of the most
embarrassingly parallel of applications, an MPP
application must share interim results with its
peers before it can make further progress. These

 * Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin
Company for the United States Department of
Energy’s National Nuclear Security
Administration under contract DE-AC04-
94AL85000.

synchronization events are made at specific
points in the application code. If one processor
takes longer to reach that point than all the other
processors, everyone must wait. The overall
finish time is increased.

Sandia National Laboratories began addressing
this problem more than a decade ago with an
architecture based on node specialization [3].
Sets of nodes in an MPP are designated to
perform specific tasks, each running an operating
system best suited to the specialized function.
Sandia chose to not use a multi-purpose
operating system for the computational nodes
and instead began developing its first light
weight operating system, SUNMOS, which ran
on the compute nodes on the Intel Paragon
system [4]. Based on its viability, the
architecture evolved into the PUMA operating
system [5]. Intel ported PUMA to the ASCI Red
TFLOPS system [6], thus creating the Cougar
operating system. Most recently, Cougar has
been ported to Cray’s XT3 system and renamed
to Catamount. As the references indicate, there
are a number of descriptions of the predecessor
operating systems. While the majority of those
discussions still apply to Catamount, this paper
takes a fresh look at the architecture as it is
currently implemented.

2.0 Description of Catamount
The design goals of catamount remain consistent
with its predecessors:

• Targeted at massively parallel environments
comprised of thousands of processors with
distributed memory and a tightly coupled
network.

• Provide necessary support for scalable,
performance-oriented scientific applications

Page 2 of 7

• Offer a suitable development environment
for parallel applications and libraries.

• Emphasize efficiency over functionality.
• Maximize the amount of resources (e.g.

CPU, memory, and network bandwidth)
allocated to the application.

• Seek to minimize time to completion for the
application.

In achieving these design goals, catamount
assumes a functionally partitioned MPP. That is,
catamount runs on processors intended for
intense computation and relies on other
processors within the MPP to perform additional
services. These service processors run Linux and
provide the interactive development
environment, file I/O, and high speed access to
external services. Figure 1 depicts the functional
partitions.

Figure 1: Functional Partitions of MPP using
Catamount

High
Speed

External
Network

High
Speed

External
Network

Service
Processors
(Linux)

Compute
Processors
(Catamount)

I/O processors (Linux)

Network I/O
Processors (Linux)

Continue to refer to Figure 1 as we discuss the
usage model for Catamount. A user logs into a
Linux service processor and performs typical
application execution set-up, such as compilation
and creation of the problem dataset. The user
then requests that the application be run on some
number of compute processors. The user-
invoked “yod” program (see Section 5.0),
executing on a service processor, launches the
application on the assigned compute processors.
Once started, the application runs under
Catamount’s control. The application instances
on each compute processor pass messages to
communicate with each other over the tightly
coupled network. File I/O flows between the
compute processors and the I/O processors.
When the application completes, the user can
review the results on the service processors
and/or direct that the files be sent to external
services for post processing or archival storage.

The Catamount operating system consists of a
Quintessential Kernel (QK) and a Process
Control Thread (PCT)[7]. The PCT and the QK
work together to provide a complete operating
system. The PCT will decide what physical
memory and virtual addresses a new process is to
have and at the behest of the PCT, the QK will
set up the virtual addressing structures for the
new process that are required by the hardware.
The PCT will decide which process is to run next
and at the behest of the PCT, the QK will flush
caches, set up the hardware registers, and run
this process. There is a clear separation between
resource management and kernel task execution.
The PCT is responsible for setting the policies
and the QK is responsible for enforcing them.
The basic structure of these components is
shown below:

Figure 2: Compute Processor Components

Quintessential Kernel

Application Process
(up to 4; typically 1 for single
cores and 2 for dual cores)

Process
Control
Thread

While Figure 2 provides a useful logical view of
the components, the physical layout is quite
different and is shown in Figure 3.

Figure 3: Catamount Physical Memory Layout
(not to scale)

QK
text

Network
buffer

(qk heap)

Portals
memory

PCT
text

PCT
data

User
program
text &
data

User
heap

S
t
a
c
k

QK
data

S
t
a
c
k

S
t
a
c
k

P
e P
r C
s T
i
s h
t e
e a
n p
t

PCT heap

Up to 4
instances

When the QK installs the PCT, the remainder of
physical memory is included in the PCT’s heap.
When the PCT loads an application, it forfeits
the bulk of its heap space to the application. This
is important because it means the user
application is within the PCT’s address space.
This facilitates the PCT’s role in supporting an
application debugger and performing core dump
processing.

Page 3 of 7

While Catamount supports virtual addressing,
there is no virtual memory support. This is an
important performance, reliability and scalability
feature of Catamount. Disks needed to
implement virtual memory are very slow in
comparison to memory access, have a low mean
time to failure, and impede the predictable
progress of the application.

Another feature of Catamount’s memory
management is default support for 2 MB pages.
Larger pages can significantly reduce cache
misses and TLB flushes as they cover a larger
percentage of memory. Smaller, 4K pages are
supported as well for applications that require
more random access of memory. The user
enables small pages with a command line option
when starting the parallel application.

3.0 Quintessential Kernel Internals
The QK is the lowest level of the operating
system. Logically, it sits closest to the hardware
and performs services on behalf of the PCT and
user-level processes. The QK supports a small
set of tasks that require execution in privileged
supervisor mode, including servicing network
requests, interrupt handling, and fault handling.
If the interrupt or fault is caused by the
application, control is turned over to the PCT for
handling. The QK also fulfills privileged
requests made by the PCT, including running
processes, context switching, virtual address
translation and validation. However, the QK
does not manage the resources on a compute
node. It simply provides the necessary
mechanisms to enforce policies established by
the PCT and to perform specific tasks that must
executed in supervisor mode.

The QK provides a trap mechanism for
communicating with the PCT or with the
application. The following traps are in use:
NULL_TRAP--no trap – a handler is never

called (used for timing studies)
SETUID – set user id (PCT only)
LPUTS--print a string to console
QUIT_QUANTUM – quit quantum application

request to the PCT
INIT_PROC--initialize a process (PCT only)
GET_CACHE – get cache table entry
RUN_PROCESS--run the indicated process

context
INSTALL_PCT--set the start address for the

PCT (PCT only)

INIT_REGION--initialize a memory region for a
process (PCT only)

MEMLOGCTL—control for the memory log
capability

TRAP_NOP – returns CPU ID
TRAP_CPU_MIGRATE – migrate process from

cpu0 to cpu1
TRAP_DUAL_PROC – check for second CPU
RCAD_IOCTL—interface to the RAS system
PTL_KERNEL_FWD – dispatch portals system

call

4.0 Process Control Thread Internals
The PCT is a privileged user-level process that
performs functions traditionally associated with
an operating system. It has read/write access to
all memory in user-space and is in charge of
managing all operating system resources. This
involves process loading, job scheduling, and
memory management. While QKs do not
communicate with each other, the PCTs on the
nodes that have been allocated to a parallel
application communicate to start, manage, and
some times to tear down the job.

The PCT uses a mailbox structure to interface
with an application. When needed, the
application fills in the mailbox and then gives up
the processor using the quit quantum trap. The
following is the list of currently supported
mailbox requests.
EXIT – process exiting
WAIT – process requests wait
SLEEP – process gives up quantum
SIGNAL – signal another PCT; used in kill

processing
SET_QUANTUM – set the application quantum
PERFMON – read or write performance registers
ABORT_LOAD – abort the load of an

application
CORE_PROC_INIT – initialize structure for

core dump processing
SET_VN_MODE – inform scheduler that a

Virtual Node job is running

5.0 Yod Internals
The parallel job launcher component of the
runtime system is called yod. Yod is an
evolution of the xnc (execute network computer)
program used to launch jobs on the nCube
supercomputer. (x+1)(n+1)(c+1) = yod. Yod
contacts a compute node allocator to obtain a set
of compute nodes, and then communicates with
the first (base) PCT to move the user's
environment and executable out to the compute

Page 4 of 7

nodes. The base PCT works with the secondary
PCTs in the job to efficiently distribute this data
to all of the compute nodes participating in the
job. This fan-out capability is a significant
accomplishment. It is an asynchronous protocol,
requires no timers, and allows all nodes to be
making progress at their own rate. We have
empirical data showing that similar attempts to
implement a logarithmic job launch have been
problematic. There are numerous end cases and
reliability issues to overcome.

Once a job has started, yod serves as an I/O
proxy for all standard I/O (stdio) functions.
Compute node applications are linked with a
library (see Libcatamount is Section 7.3) that
redefines the standard I/O library routines and
some system calls. This library implements a
remote procedure call interface to yod, which
actually performs the operation locally and then
sends the result to the compute node process.
Yod also disseminates some UNIX signals that it
receives out to the processes running in the
parallel job. When yod receives a signal, it sends
a message to each PCT in the job who delivers
the desired signal to the application process. This
feature is used for operations such as user-level
checkpointing and killing jobs.

The yod program allows for a large number of
arguments on the command line. They are listed
below. But in the simplest case, only the yod
command and the name of the program are
required.

yod [-Account project/task] [-D option] [-help
] [{ -size | -sz | -np }{ n | all }] [-VN] [-
small_pages] [-stack size] [-tlimit secs] [-list
processor-list] [-strace] [-target { catamount |
linux }] [-share] [-heap size] [-Priority
priority] [-Version] progname [progargs] | -F
loadfile

Many of these options are self-explanatory, but a
few are worth noting. Since there is no virtual
memory, the application stack size does not grow
dynamically during execution. It is allocated
during application load. The default size is 16
megabytes. This option must be tuned by the
user, if necessary. The share option is used to
support multiple applications on the same
processor. Do not confuse this option with the
Dual Core –VN (virtual node) option. The virtual
node implementation is described separately in
Section 6. The application’s heap size defaults to
the rest of memory (see Figure 3) after the text,

data, and stack sections are allocated. The heap
option is used with share mode to reserve space
for the subsequent programs sharing the
processor.

The File or F option allows the user to specify
multiple executables. Each executable runs on
some portion of the allocated processors. The
executables can perform different functions, but
are still able to inter-communicate with the other
executables. This feature is particularly useful
with the target option introduced in Catamount.
The target option did not exist in Cougar or its
predecessors. Yod can now launch executables
on Linux processors as well as processors
running Catamount. They must be different
executables as the system libraries differ (no
dynamic linking on Catamount). One possible
usage scenario is to perform intensive
computation on the Catamount processors and
communicate interim results to the executable on
the Linux node. The Linux executable has the
fuller set of services to perform such operations
as visualization. [Note that a syntax change is
being considered, so that the target operating
system may be identified in a different way on
the command line.]

6.0 Dual Core Extensions
Dual core support has been added to Catamount
over the past year. Philosophically it is Virtual
Node (VN) mode from Cougar. Cougar was the
predecessor operating system to Catamount
which ran on the ASCI Red MPP. Each ASCI
Red node had two processors.

VN allows the application to use twice as many
nodes with no change to the application
executable. It must be remembered however that
the number of processors is the only resource
that has been doubled. The node memory is split
between the two processes and the two processes
share network access. It should not be thought of
as an SMP since the two processes on a node do
not share memory. There is only one QK image
and one PCT image on a node. The single PCT
only runs on the first processor and manages
resources for both processes.

Page 5 of 7

Figure 4: Dual Core CPU responsibility
assignment

QK
PCT

APP-0

QK
subset

APP-1

Dual Core Opteron

CPU-0 CPU-1

Seastar
Network
Interface

Chip

From the application perspective there are two
totally independent processes on the node just as
if they were on separate nodes. Only one of the
processors talks directly to the network. This
means that network requests from the second
process must be passed (proxied) to the first
process. Either process may trap into the kernel
and initially that is handled by its own processor.
Of the listed traps, the second processor handles
three of them itself, forwards three of them to the
first processor and rejects the rest. The only case
that requires inter-CPU locking is writing to the
system console.

As implemented, VN is incompatible with share
mode. When running in VN, those two processes
must be the only application processes on the
node. Share mode was discussed briefly in
Section 5. It has proven to be of limited utility
and therefore the restriction is not deemed
significant.

6.1 QK multi-CPU support
The QK changes for multi-CPU support fall
mainly in two categories: adding a dimension to
control variables and second CPU startup at boot
time. The QK does not have a particular
awareness of VN mode, but it does treat the
CPUs in a master-slave relationship. Since all
PCT execution and scheduling occurs on the first
processor, the second processor has a “wait-for-
work” loop in the QK. Running an application
process on CPU-0 involves a context switch
from the PCT. Continuing a process on CPU-1
involves simply clearing the flag that allows the
processor to come out of the wait-for-work loop.

6.2 Changes for Job Load
For VN, the load process as seen from yod is
hardly changed. A single copy of the executable
is fanned out to the PCTs. This does restrict the

dual cores to having a single choice of binary on
each node. The PCT lays out two copies of the
program in memory dividing the heap equally
between the two processes.

Both processes on a node then begin
independently and the second process migrates
to the second CPU by making a system request.
It then notifies the PCT to switch schedulers and
the VN scheduler lets the processes run as
appropriate. There is no true scheduling between
them.

7.0 Libraries
By themselves, the QK and PCT that make up
the catamount OS are not very useful. System
libraries provide the mechanism for an
application to use their services. Four key
libraries must be linked with each application:
libc, libcatamount, libsysio, and libportals.

7.1 Libc
Catamount is the first version of the light weight
OS to port and use glibc. The decision to use
glibc was difficult to make. It is a very large and
complex code base and does not seem in keeping
with the light weight nature of the compute node
system software. Due to the over-whelming
advantage of being able to use an off-the-shelf
Linux compiler, the port was done using glibc
2.3.2. Considerable pruning was done to provide
only the features supported by the light weight
operating system. Although customization is a
strong feature of glibc, this port was non-trivial.

The following functional groups are not
supported by the lightweight kernel and therefore
cannot be implemented by libc:

• No threads support.
• No off-node communication other than via

Portals, such as pipes, sockets, rpc's or
Internet Protocols.

• No dynamic process creation; for example:
no exec(), fork(), popen(), or system().

• No dynamic loading of executable code.
• Limited signals support. See the yod section

for detail on signal handling.
• No /proc or ptrace.
• No mmap. A skeleton function is supplied,

but returns –1.
• No profil().
• Limited ioctl
• No getpwd family of calls.
• No functions requiring any form of db (e.g.

ndb). For example, there is no support for

Page 6 of 7

the uid, gid family of queries that are based
on the ndb.

• No terminal control
• No functions that require UNIX-style

daemons

7.2 Libsysio
The libsysio library multiplexes I/O to the
function supporting the particular file system to
which the I/O is targeted. Pictorially, the flow is
as shown in Figure 5.

Figure 5: Role of Libsysio in File I/O

Compute Node
Application

libsysio
lib

pvfs
lib

lustre
lib

catamount

iod

iod

.
,
,

mds

ost

ost

.
,
,

mds

Compute

Service

PVFS File System Lustre File System

yod

stdio,
syscall
offload

to
pvfs

to
lustre

UFS
NFS
DFS

When a compute node application issues an
open() call, libsysio determines the appropriate
library to service the call, based on the file type
associated with the path name. Once the
appropriate library is selected during open, the
same library is used for all subsequent I/O to that
path name. In the figure, three possible libraries
are shown: PVFS, Lustre and Catamount. The
libsysio software is not constrained to exactly
these three options. More or less libraries are
possible. Libcatamount will service all stdio and
I/O to the serial (Unix) file systems, currently
identified as UFS, NFS, and DFS. Using its RPC
mechanism, libcatamount offloads the I/O
request to yod. Yod invokes the appropriate
Linux system call to perform the I/O operation.
Similarly, using the mechanism unique to their
implementations, liblustres and libpvfs will
forward I/O requests to their appropriate
metadata servers and data handlers.

7.3 Libcatamount
Libcatamount provides several services. First, it
implements a remote procedure call (RPC)
mechanism for communicating between the
application and its yod program. Any I/O that is
handled by yod uses the RPC mechanism. This
feature is sometimes referred to as sys(tem) call
offload. While currently only supporting I/O-

related functions and exit, it could support other
system calls that can only be performed on a full-
service operating system. To date, none have
been needed.

Libcatamount provides a custom malloc that is
tuned to favor large memory allocations. This is
the default malloc, although the glibc malloc can
be used if explicitly requested on the link line.

Previously, cstart.o was contained in the
predecessor versions of libcatamount. The
function _cstart2() is called prior to main() on
compute node applications. It initializes
important structures and communication paths.
Due to linkage issues for catamount, cstart.o
must remain a separately linked object file. But it
is still archived as a member of the library.

Lastly, libcatamount contains some functions
that are unique to Catamount. It provides a
function for requesting and setting performance
registers from/by the PCT. It implements a
barrier function for synchronizing all processes
on all nodes in the parallel application. This
function is invoked in _cstart2 prior to calling
main. In this way, applications have a shot-gun
style start. The dclock function returns a high-
resolution time-since-boot that can be used for
timing studies.

7.4 Libportals
The portals library [8] is not part of Catamount,
but is a critical and required component. It is a
separate, low-level network programming
interface. The portals facility is used whenever
there is communication between any two
nodes—whether they are compute or service
nodes. Catamount currently uses version 3.3 of
portals. System, application, and service
protocols are implemented on top of it.

The portals protocol is connectionless and
provides protected, reliable, in-order delivery. It
is designed to support multiple communicating
processes per node and communication between
processes created from different executables.

To support scalability, the portals interface
maintains a minimal amount of state. A process
is not required to explicitly establish a point-to-
point connection with another process in order to
communicate. Moreover, all buffers used in the
transmission of messages are maintained in user-
space. The target process determines how to
respond to incoming messages. Messages for

Page 7 of 7

which there are no buffers are discarded. That is,
portals are based on expected messages. Higher-
level message passing layers that need support
for unexpected messages, such as MPI, need to
set aside a certain amount of space to receive
unexpected messages.

8.0 Future Work
Sandia continues to enhance Catamount. We are
currently investigating support for quad core
processors. Additionally, we are completing
work to use a protocol offload engine in the
Network Interface Card.

Sandia is also continuing to research the design,
implementation and deployment of operating
systems for massively parallel scientific
computing platforms. A research project is
underway to investigate a framework for
building application-specific operating systems
[9]. This project is a collaboration between
Sandia, the University of New Mexico, and the
California Institute of Technology.

9.0 References

[1] F. Petrini, D. J. Kerbyson, and S. Pakin,
"The Case of the Missing
Supercomputer Performance:
Identifying and Eliminating the
Performance Variability on the ASCI Q
Machine," presented at ACM/IEEE
Conference on High Performance
Networking and Computing, Phoenix,
AZ, 2003.

[2] T. Jones, S. Dawson, R. Neely, W.
Tuel, L. Brenner, J. Fier, R. Blackmore,
P. Caffrey, B. Maskell, P. Tomlinson,
and M. Roberts, "Improving the
Scalability of Parallel Jobs by Adding
Parallel Awareness to the Operating
System," presented at ACM/IEEE
Conference on High Performance
Networking and Computing, Phoenix,
AZ, 2003.

[3] D. S. Greenberg, R. Brightwell, L. A.
Fisk, A. B. Maccabe, and R. Riesen, "A
system software architecture for high-
end computing," presented at SC'97:
High Performance Networking and
Computing, San Jose, California, 1997.

[4] A. B. Maccabe, K. S. McCurley, R.
Riesen, and S. R. Wheat, "SUNMOS
for the Intel Paragon: A brief user's
guide," presented at Intel
Supercomputer Users' Group, 1994.

[5] L. Shuler, C. Jong, R. Riesen, D. W. v.
Dresser, A. B. Maccabe, L. A. Fisk, and
T. M. Stallcup, "The Puma Operating
System for Massively Parallel
Computers," presented at Intel
Supercomputer Users' Group,
Albuquerque, NM, 1995.

[6] T. G. Mattson, D. Scott, and S. R.
Wheat, "A TeraFLOP Supercomputer in
1996: The ASCI TFLOP System,"
presented at International Parallel

Processing Symposium, Honolulu, HI,
1996.

[7] R. Brightwell, W. J. Camp, B. Cole, E.
DeBenedictis, R. Leland, J. Tomkins,
and A. B. Maccabe, "Architectural
Specification for Massively Parallel
Computers: An Experience and
Measurement-Based Approach,"
Concurrency and Computation:
Practice and Experience, vol. 17, pp.
1271-1316, 2005.

[8] R. Brightwell, R. Riesen, B. Lawry, and
A. B. Maccabe, "Portals 3.0: Protocol
Building Blocks for Low Overhead
Communication," presented at 2002
Workshop on Communication
Architecture for Clusters, 2002.

[9] A. B. Maccabe, P. G. Bridges, R.
Brightwell, R. Riesen, and T. B.
Hudson, "Highly Configurable
Operating Systems for Ultrascale
Systems," presented at First
International Workshop on Operating
Systems, Programming Environments
and Management Tools for High-
Performance Computing on Clusters,
St. Malo, France, 2004.

